Ventilatory responses to ozone are reduced in immature rats.

نویسندگان

  • S A Shore
  • J H Abraham
  • I N Schwartzman
  • G G Murthy
  • J D Laporte
چکیده

During ozone (O(3)) exposure, adult rats decrease their minute ventilation (VE). To determine whether such changes are also observed in immature animals, Sprague-Dawley rats, aged 2, 4, 6, 8, or 12 wk, were exposed to O(3) (2 ppm) in nose-only-exposure plethysmographs. Baseline VE normalized for body weight decreased with age from 2.1 +/- 0.1 ml. min(-1). g(-1) in 2-wk-old rats to 0. 72 +/- 0.03 ml. min(-1). g(-1) in 12-wk-old rats, consistent with the higher metabolic rates of younger animals. In adult (8- and 12-wk-old) rats, O(3) caused 40-50% decreases in VE that occurred primarily as the result of a decrease in tidal volume. In 6-wk-old rats, O(3)-induced changes in VE were significantly less, and in 2- and 4-wk-old rats, no significant changes in VE were observed during O(3) exposure. The increased baseline VE and the smaller decrements in VE induced by O(3) in the immature rats imply that their delivered dose of O(3) is much higher than in adult rats. To determine whether these differences in O(3) dose influence the extent of injury, we measured bronchoalveolar lavage protein concentrations. The magnitude of the changes in bronchoalveolar lavage induced by O(3) was significantly greater in 2- than in 8-wk-old rats (267 +/- 47 vs. 165 +/- 22%, respectively, P < 0.05). O(3) exposure also caused a significant increase in PGE(2) in 2-wk-old but not in adult rats. The results indicate that the ventilatory response to O(3) is absent in 2-wk-old rats and that lack of this response, in conjunction with a greater specific ventilation, leads to greater lung injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of an exposure chamber for animals and its use for inhalation exposure to welding fumes and gases.

An inhalation exposure system, consisting of an inhalation chamber and an generating and feeding device for welding fumes and gases with a welding robot, was constructed and examined for its application to experimental toxicology for ventilatory responses of conscious rats to welding fumes and gases. The exposure system allowed an inhalation of fresh welding fumes and gases, and could supply ai...

متن کامل

Ozone-induced airway hyperresponsiveness is reduced in immature mice.

During ozone (O(3)) exposure, adult mice decrease their minute ventilation (VE). To determine whether there are age-related differences in the ventilatory response to O(3), A/J mice, aged 2, 4, 8, or 12 wk, were exposed to O(3) (0.3-3.0 parts/million for 3 h) in nose-only exposure plethysmographs. Baseline VE normalized for body weight (VE/g) decreased with increasing age, consistent with the h...

متن کامل

Effect of Three Therapeutic Methods of Exercise, Ozone, and Stem Cells on the MEF2C Expression and Myostatin Levels in Femoral Muscle Tissue of the Osteoarthritis Rats

Aims Myostatin and Myocyte Enhancer Factor 2C (MEF2C) are involved in muscle changes associated with bone problems. The aim of the present study was to determine the effect of three therapeutic methods of exercise, ozone, and stem cells on MEF-2C gene expression and myostatin levels of femoral muscle tissue in osteoarthritis rats. Methods & Materials This experimental study was done on 63 male...

متن کامل

Influence of housing conditions from weaning to adulthood on the ventilatory, thermoregulatory, and endocrine responses to hypoxia of adult female rats.

Housing conditions affect animal physiology. We previously showed that the hypoxic ventilatory and thermoregulatory responses to hypoxia of adult male rats housed in triads during the juvenile period (postnatal day 21 to adulthood) were significantly reduced compared with animals housed in pairs. Because sex hormones influence development and responsiveness to environmental stressors, this stud...

متن کامل

Genetic determinants on rat chromosome 6 modulate variation in the hypercapnic ventilatory response using consomic strains.

To understand the genetic basis of pathways involved in the control of breathing, a large scale, high-throughput study using chromosomal substitution strains of rats is underway. Eight new consomic rat stains (SS-2(BN), SS-4(BN), SS-6(BN), SS-7(BN), SS-8(BN), SS-11(BN), SS-12(BN), SS-14(BN), SS-Y(BN)), containing one homozygous BN/NHsdMcwi (BN) chromosome on a background of SS/JrHsdMcwi (SS), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2000